Abstract

AbstractOne of the advantages of organic photovoltaics (OPV) over other contemporary technologies is its relative ease of processing. There are, however, very few works that have realized fully printed devices, including the bottom electrode, let alone with a scalable process in a reasonable device size (>1 cm2). In this work, design steps and optimization processes towards fully printed OPV modules with scalable processes are demonstrated for the first time. An overview on issues related to upscaling with printed electrodes is first provided. The various issues are then addressed by a rational design process supported by measurements and calculations. Finally, a set of fully printed OPV modules are fabricated using these optimized parameters that have over 3.5‐cm2 active area with 5% efficiency. For the first time, this work has also demonstrated the process compatibility of fully printed device structures with non‐fullerene acceptor systems, which enables more design opportunities for the current generation of high‐performance OPV materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.