Abstract

AbstractA printable hybrid hydrogel is fabricated by embedding poly(N‐isopropylacrylamide) (PNIPAm) microparticles within a water‐rich silica‐alumina(Si/Al)‐based gel matrix. The hybrid gel holds water content of up to 70 wt%, due to its unique Si/Al matrix. The hybrid hydrogel can respond to both heat and electrical stimuli, and can be directly printed layer‐by‐layer using a commercial 3‐dimensional printer, without requiring any curing. The hybrid ink is printed onto a transparent, flexible conductive electrode composed of silver nanoparticles and sustains bending angles of up to 180°, which enables patterning of various flexible devices such as smart windows and a 3D optical waveguide valve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.