Abstract

Electrochemical methods have been extensively applied for the detection of chemical information from food or other analytes. However, existing electrochemical methods are limited to focusing solely on the absorption peaks and disregard much of the hidden chemical fingerprint information. Consequently, electrochemical sensors are constrained by their ability to detect samples containing multiple source-material mixtures with overlapping constituents. We hypothesized that the target substances can be effectively identified and detected using differential sensor data combined with artificial intelligence (AI). In this study, we developed a novel signal array composed of five metal electrodes and used a convolutional neural network (CNN) model for feature extraction to detect capsaicinoids in stews. Our results indicate that the proposed method achieved satisfactory predictions with a root mean square error (RMSE) of 5.407 in independent brine samples. This provides a promising strategy and practical approach for the nondestructive analysis of multidimensional electrochemical data of mixed analytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.