Abstract
One of the sources of nonlinearity in charge redistribution analog-to-digital converters (ADCs) is capacitor voltage dependence. While it is possible to address this problem through capacitor fabrication technology improvements, situations arise where it is more desirable to use circuit techniques. The conventional fully differential charge redistribution converter topology eliminates errors proportional to the capacitor linear voltage coefficient, but its comparator is subjected to the common-mode input signal. When converting unbalanced differential signals, linearity is achieved only with large comparator common-mode rejection. An alternative differential converter topology that isolates the comparator from the input common-mode signal, resulting in a common-mode rejection ratio of -73 dB, is presented. In addition, a circuit that cancels the error caused by the quadratic capacitor voltage coefficient is described. Measurements show that it is capable of increasing the converter linearity by an order of magnitude.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.