Abstract
PurposeTo train and evaluate a very deep dilated residual network (DD-ResNet) for fast and consistent auto-segmentation of the clinical target volume (CTV) for breast cancer (BC) radiotherapy with big data. MethodsDD-ResNet was an end-to-end model enabling fast training and testing. We used big data comprising 800 patients who underwent breast-conserving therapy for evaluation. The CTV were validated by experienced radiation oncologists. We performed a fivefold cross-validation to test the performance of the model. The segmentation accuracy was quantified by the Dice similarity coefficient (DSC) and the Hausdorff distance (HD). The performance of the proposed model was evaluated against two different deep learning models: deep dilated convolutional neural network (DDCNN) and deep deconvolutional neural network (DDNN). ResultsMean DSC values of DD-ResNet (0.91 and 0.91) were higher than the other two networks (DDCNN: 0.85 and 0.85; DDNN: 0.88 and 0.87) for both right-sided and left-sided BC. It also has smaller mean HD values of 10.5 mm and 10.7 mm compared with DDCNN (15.1 mm and 15.6 mm) and DDNN (13.5 mm and 14.1 mm). Mean segmentation time was 4 s, 21 s and 15 s per patient with DDCNN, DDNN and DD-ResNet, respectively. The DD-ResNet was also superior with regard to results in the literature. ConclusionsThe proposed method could segment the CTV accurately with acceptable time consumption. It was invariant to the body size and shape of patients and could improve the consistency of target delineation and streamline radiotherapy workflows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.