Abstract
Rayleigh–Taylor instability occurs when a heavier fluid overlies a lighter fluid, and the two seek to exchange positions under the effect of gravity. We present a linearized theory for arbitrary three-dimensional (3D) initial disturbances that grow in time, and calculate the evolution of the interface for early times. A new spectral method is introduced for the fully 3D nonlinear problem in a Boussinesq fluid, where the interface between the light and heavy fluids is approximated with a smooth but rapid density change in the fluid. The results of large-scale numerical calculation are presented in fully 3D geometry, and compared and contrasted with the early-time linearized theory.
 
 doi:10.1017/S1446181119000087
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.