Abstract

This paper presents an accurate surface integral equation formulation for modeling interconnects. It accurately captures the skin effect inside conductors using a recently-developed 3D differential surface admittance operator. Numerical results demonstrate that the proposed formulation is significantly more efficient than existing volumetric techniques in terms of computational time and memory consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.