Abstract
With the rapid development of electrical circuits, Micro electromechanical system (MEMS) and network technology, wireless smart sensor networks (WSSN) have shown significant potential for replacing existing wired SHM systems due to their cost effectiveness and versatility. A few structural systems have been monitored using WSSN measuring acceleration, temperature, wind speed, humidity; however, a multi-scale sensing device which has the capability to measure the displacement has not been yet developed. In the previous paper, a new high-accuracy displacement sensing system was developed combining a high resolution analog displacement sensor and MEMS-based wireless microprocessor platform. Also, the wireless sensor was calibrated in the laboratory to get the high precision displacement data from analog sensor, and its performance was validated to measure simulated thermal expansion of a laboratory bridge structure. This paper expands the validation of the developed system on full-scale experiments to measure both static and dynamic displacement of expansion joints, temperature, and vibration of an in-service highway bridge. A brief visual investigation of bridges, comparison between theoretical and measured thermal expansion are also provided. The developed system showed the capability to measure the displacement with accuracy of 0.00027 in.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.