Abstract

The first exhaustive purification and characterization of the much-studied "fullerenols", prepared by reaction of C(60) in toluene with an oxygenated, aqueous NaOH solution using tetrabutylammonium hydroxide as a phase transfer catalyst, has been performed. The resulting fullerenol is not simply polyhydroxylated C(60) but rather is a structurally and electronically complex C(60) radical anion with a molecular formula of Na(+)(n)[C(60)O(x)(OH)(y)](n)(-) (where n = 2-3, x = 7-9, and y = 12-15) for three different, but identical, preparations. Surprisingly, Na(+)-fullerenol is paramagnetic, exhibiting mu(B) values in aqueous solution of 1.9-2.1 B.M. at 0.5 T and 300 K and R(1) proton relaxivities of 0.55-0.77 mM(-1)s(-1) at 20 MHz and 40 degrees C, values both slightly higher than those expected for a pure S = 1/2 spin system. ESR studies (ESE-FS and 2D nutation) of frozen aqueous solutions at 1.5 and 5.0 K establish that Na(+)-fullerenol is mainly S = 1/2 with a minor, but significant, component of S = 1. Thus, this is the first report to characterize these widely studied, water-soluble fullerenols as stable radical anions. The stability of the S = 1/2 Na(+)-fullerenol radical is likely due to a highly derivatized C(60) surface that protects a cyclopentadienyl radical center on the fullerene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.