Abstract

We report here on the preparation and characterization of a fullerenium salt in the solid state, where the fullerene is in the 2+ oxidized state. To succeed in this long-standing challenge, we exploit the oxidizing power of one of the strongest Lewis acids, AsF(5). The weak nucleophilic character of its conjugate base is essential in stabilizing the fullerene dication in a crystal lattice. High-resolution structural analysis of this compound, with the formula C(60)(AsF(6))(2), indicates that the highly reactive C(60)(2+) units are arranged according to a novel 1D "zigzag" polymer structure. The molecules are connected by an alternating sequence of four-membered carbon rings ([2 + 2] cycloaddition) and single C-C bonds. The long awaited high-T(c) superconductivity and magnetism, expected in a hole-doped C(60) compound, are replaced instead by a semiconducting behavior, quite probably originating from the reduced crystal and molecular symmetry upon polymerization. The small value of the energy gap (approximately 70 meV) suggests, nevertheless, the proximity of a metallic phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.