Abstract

The hydration of fullerenes and shungite carbon nanoclusters in aqueous dispersions at various carbon concentrations is studied on frozen samples by EPR with spin probes. It is found that, for stable dispersions of both substances (at carbon concentrations of 0.1 mg/ml), the probe rotation frequency versus 1/T dependences exhibit a plateau in the range 243–257 K, which is probably associated with the peculiarities of freezing of water localized near hydrophobic structures of carbon nanoclusters. Solid phases isolated from supersaturated aqueous dispersions of fullerenes and shungites by slow evaporation of water at temperatures higher than 0°C are examines by electron diffraction and electron microscopy. It is established that obtained films of fullerenes contain at least two phases: fullerite with a face-centered cubic lattice and a phase similar in interplanar spacing and radically different in distribution of intensities of diffraction peaks. It is concluded that this phase is formed by the interaction of fullerenes and water (an analogous phase is found in shungite carbon films). It is found that the morphology of the new crystal phase is characterized by globules of size 20 to 70 nm, for fullerenes, and 10 to 400 nm for shungites. It is established that processes of crystallization of fullerites and fullerene-containing phases are very sensitive to temperature: a decrease in the temperature (within the range from 40 to 1°C) is accompanied by an increase in the new phase content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.