Abstract

This study considers the full waveform inversion (FWI) method based on the asymptotic solution of the Helmholtz equation. We provide frequency-dependent ray tracing to obtain the wave field used to compute the FWI gradient and calculate the modeled data. With a comparable quality of the inverse problem solution as applied to the standard finite difference approach, the speed of the calculations in the asymptotic method is an order of magnitude higher. A series of numerical experiments demonstrate the approach’s effectiveness in reconstructing the macro velocity structure of complex media for low frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.