Abstract

In this paper, a challenging problem of full-state regulation control (FSRC) for an asymmetric underactuated surface vehicle (AUSV) suffering from disturbances is solved. The FSRC objective is divided into two subtasks, i.e., reaching trajectory (RT) guidance and tracking controller synthesis with underactuation and disturbances. The RT guidance is achieved by devising a circular orbit (CO) accurately passing through the desired full-state waypoint (FWP). Using a series of coordinate transformations, tracking error dynamics are shaped in a translation-rotation cascade form with respect to the CO-center frame. Using finite-time approach, lumped disturbances are accurately estimated by exact observers, which facilitate synthesizing surge and yaw controllers. By creating a new coordinate, translation subsystem is converted to a lower-triangular form. Combining with backstepping technique, cascade analysis and Lypunov approach, translation and rotation controllers are derived systematically, and render the entire closed-loop FSRC system globally asymptotically stable. Hence, the AUSV is regulated to the desired FWP. Simulation studies on a benchmark AUSV are conducted to demonstrate remarkable performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.