Abstract

The viscoelastic response of bovine corneas was characterized using in vitro inflation (bulge) experiments combined with spatially-resolved deformation mapping via digital image correlation. A complex fixture conforming to the limbal annulus was developed to hold the attached sclera rigid while allowing deformation only in the cornea. A statistical set of experiments was performed for a pressure range of 3.6–8 kPa (27–60 mmHg), representing nominal bovine intraocular pressure (IOP) to acute glaucoma conditions. A broader pressure range of 0–32 kPa (0–240 mmHg) was also examined to characterize the nonlinear finite deformation behavior of the tissue. Results showed that for pressures near and above IOP, the majority of the deformation was localized in the limbus and peripheral regions, which left the central cornea largely undeformed. This observation was consistent with the known preferred circumferential alignment of collagen fibrils outside of the central cornea. In general, the inflation experiments observed viscoelastic behavior in the form of rate-dependent hysteresis in the pressure–deformation response of the apex of the cornea, creep in the apex deformation at a constant inflation pressure, and relaxation in the pressure response at a constant inflation volume. The 3.6–8 kPa (27–60 mmHg) pressure range produced small viscoelastic deformations and a nearly linear pressure–deformation response, which suggests that for physiological pressure ranges, the cornea can be approximated as a linear viscoelastic or linear pseudo-elastic material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.