Abstract

In this paper, we investigate the application of spatial-modulation (SM) in multi-antenna full-duplex (FD) decode-and-forward (DF) relay networks with simultaneous wireless information and power transfer (SWIPT). Both the time switching (TS) and power splitting (PS) protocols are employed. In the proposed scheme, a subset of relay antennas are selected to forward the received information signal with the harvested energy and the remaining inactive antennas receive the energy signal/information signal from the source node. The application of SM at the relay node leads to the throughput improvement of the relay-to-destination link because of the additional information mapped to the active antenna indices, which consequently leads to the overall system throughput improvement. According to the proposed tight SM mutual information (MI) upper bound, we provide a theoretical solution for the system throughput optimization. Monte-Carlo simulations verify the significant throughput gain facilitated by SM as well as the validity of the throughput optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.