Abstract
With the rapid growth of demand for ever-increasing data rate, spectrum resources have become more and more scarce. As a promising technique to increase the efficiency of the spectrum utilization, cognitive radio (CR) technique has the great potential to meet such a requirement by allowing un-licensed users to coexist in licensed bands. In conventional CR systems, the spectrum sensing is performed at the beginning of each time slot before the data transmission. This unfortunately results in two major problems: 1) transmission time reduction due to sensing, and 2) sensing accuracy impairment due to data transmission. To tackle these problems, in this paper we present a new design paradigm for future CR by exploring the full-duplex (FD) techniques to achieve the simultaneous spectrum sensing and data transmission. With FD radios equipped at the secondary users (SUs), SUs can simultaneously sense and access the vacant spectrum, and thus, significantly improve sensing performances and meanwhile increase data transmission efficiency. The aim of this article is to transform the promising conceptual framework into the practical wireless network design by addressing a diverse set of challenges such as protocol design and theoretical analysis. Several application scenarios with FD enabled CR are elaborated, and key open research directions and novel algorithms in these systems are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.