Abstract

Time-specific Safety Performance Functions (SPFs) were proposed to achieve accurate and dynamic crash frequency predictions. Unfortunately, some states do not have or archive the needed high-resolution traffic data to develop time-specific SPFs. This study proposes a novel iterative imputation method to impute the 100% missing volume and speed data from different states with similar crash rates. First, this study calculated the crash rates for 18 states and applied the One-Way Analysis of variance (ANOVA) test to group the states with similar crash rates. Second, as an example FL and VA, which both have traffic data, were used to test the proposed iterative imputation method. The results indicated that the imputed traffic data could capture the same traffic pattern as the real-collected traffic data. Further, the Mean Absolute Error (MAE) between the imputed Ln Volume and the real-collected Ln Volume for FL is only 2.47 vehicles for each segment for three hours. The MAE between the imputed Ln AvgSpeed and the real-collected Ln AvgSpeed for FL is only 1.36 mph. The Mean Absolute Percentage Error (MAPE) between the imputed Ln Volume and the real-collected Ln Volume is 11.07%. Meanwhile, the MAPE between the imputed Ln AvgSpeed and the real-collected Ln AvgSpeed is 7.40%. Finally, this study applied the proposed iterative imputation method to develop time-specific SPFs for the state without traffic data and compared the results. The results illustrated that the time-specific SPFs developed by imputed traffic data perfectly reflected the significant variables for both morning and afternoon peak models, with a prediction accuracy of 87.1% for the morning peak model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.