Abstract

AbstractNatural rubber (NR) is a polymer relevant for many industrial applications, e.g., for its beneficial resistance against crack growth. However, applied as hose, sealing or tyre side wall it is not permanently resistant against inevitable environmental influences like UV-light, oxygen, or ozone. The latter is considered in this contribution. Ozone attack results in a fast surface crack development therefore antiozonants are added to NR compounds to reduce the velocity of degradation. Structural change is measured in Fourier transformed infrared (FT-IR) spectra of the ozone-aged surface. They show peaks assigned to oxidation products that evolve and change after artificial ageing. To discover the depth of change in molecular structure, a map of IR spectra is recorded in the cross-section by FT-IR microscopy. NR without antiozonants shows an ageing front line and a gradient of ageing intensity. Compounds including antiozonants change less pronounced in their FT-IR spectra. Therefore, other methods, e.g., differential scanning calorimetry is going to be applied to these compounds.KeywordsFT-IROzoneNR (Natural rubber)AntiozonantsAgeing

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.