Abstract

The influence of hydroxyapatite (HAP) addition on the rate and mechanism of lactide- co-glycolide copolymer (PGLA) degradation after implantation ( in vivo study) was analyzed and compared with the process taking place during in vitro studies. Structural and phase changes of poly(lactide- co-glycolide) and its composite with hydroxyapatite were determined using IR and NMR spectroscopy. Degradation of PGLA and PGLA + HAP composite in biological environment proceeds faster than under in vitro condition. Concentration of glycolidyl units in the copolymer chain decreases and that of lactidyl units increases during in vivo degradation both, in PGLA and in PGLA + HAP composite. However, in the case of the composite the decrease of glycolidyl units concentration is slower and after 6 weeks of degradation the contents of lactidyl and glycolidyl units remain stable. On the other hand, PGLA + HAP composite degrades faster than pure PGLA. The addition of HAP nanoparticles distinctly accelerates degradation of PGLA copolymer which is probably connected with the increase of hydrophilicity of the composite and inhibition of semi-crystalline lactidyl domains formation during the degradation process. Observation of the bone tissue after implantation of PGLA + HAP allows to conclude that the degradation of the composite occurs simultaneously with the implant replacement by the bone cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.