Abstract
In this investigation the potential of infrared spectroscopy, coupled to different statistical methods, were used to estimate the authenticity of grated Protected Denomination of Origin (PDO) Parmigiano Reggiano cheese (P-R).The feasibility of the analytical approach in the prediction of cheese authenticity without the use of wet chemistry was evaluated. A total of 400 plastic-sealed grated cheese samples classified as: compliance P-R, competitors, non-compliance P-R (defected P-R), and P-R with rind content of >18%. PCA was conducted for an explorative spectra analysis. Soft independent modelling of class analogy (SIMCA) analysis and artificial neural networks (ANNs) were used to classify samples, according to different cheese categories. For both the spectroscopic techniques, PCA correctly discriminated compliance P-R from competitors, but not the P-R as a function of the rind percentage and months of ripening. SIMCA analysis accurately classified the compliance and competitors' P-R samples, while samples belonging to the classes of defected P-R and P-R with rind content >18% were not accurately classified. ANN was more efficient than SIMCA in the classification of all the cheese classes. The results showed that NIR and MIR combined with different statistical approaches can be suitable for a sensitive, non-destructive, rapid and inexpensive screening of grated P-R cheese authenticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.