Abstract

PurposeThe purpose of this paper is to present gait analysis for five different terrains: level ground, ramp ascent, ramp descent, stair ascent and stair descent.Design/methodology/approachGait analysis has been carried out using a combination of the following sensors: force-sensitive resistor (FSR) sensors fabricated in foot insole to sense foot pressure, a gyroscopic sensor to detect the angular velocity of the shank and MyoWare electromyographic muscle sensors to detect muscle’s activities. All these sensors were integrated around the Arduino nano controller board for signal acquisition and conditioning purposes. In the present scheme, the muscle activities were obtained from the tibialis anterior and medial gastrocnemius muscles using electromyography (EMG) electrodes, and the acquired EMG signals were correlated with the simultaneously attained signals from the FSR and gyroscope sensors. The nRF24L01+ transceivers were used to transfer the acquired data wirelessly to the computer for further analysis. For the acquisition of sensor data, a Python-based graphical user interface has been designed to analyze and display the processed data. In the present paper, the authors got motivated to design and develop a reliable real-time gait phase detection technique that can be used later in designing a control scheme for the powered ankle-foot prosthesis.FindingsThe effectiveness of the gait phase detection was obtained in an open environment. Both off-line and real-time gait events and gait phase detections were accomplished for the FSR and gyroscopic sensors. Both sensors showed their usefulness for detecting the gait events in real-time, i.e. within 10 ms. The heuristic rules and a zero-crossing based-algorithm for the shank angular rate correctly identified all the gait events for the locomotion in all five terrains.Practical implicationsThis study leads to an understanding of human gait analysis for different types of terrains. A real-time standalone system has been designed and realized, which may find application in the design and development of ankle-foot prosthesis having real-time control feature for the above five terrains.Originality/valueThe noise-free data from three sensors were collected in the same time frame from both legs using a wireless sensor network between two transmitters and a single receiver. Unlike the data collection using a treadmill in a laboratory environment, this setup is useful for gait analysis in an open environment for different terrains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.