Abstract

A plane graph is a graph embedded in a plane without edge crossings. Fáry’s theorem states that every plane graph can be drawn as a straight-line drawing, preserving the embedding of the plane graph. In this paper, we extend Fáry’s theorem to a class of non-planar graphs. More specifically, we study the problem of drawing 1-plane graphs with straight-line edges. A 1-plane graph is a graph embedded in a plane with at most one crossing per edge. We give a characterisation of those 1-plane graphs that admit a straight-line drawing. The proof of the characterisation consists of a linear time testing algorithm and a drawing algorithm. Further, we show that there are 1-plane graphs for which every straight-line drawing has exponential area. To the best of our knowledge, this is the first result to extend Fáry’s theorem to non-planar graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.