Abstract

AbstractThe frustration in super‐ionic conductors enables their exceptionally high ionic conductivities, which are desired for many technological applications including batteries and fuel cells. A key challenge in the study of frustration is the difficulties in analyzing a large number of disordered atomistic configurations. Using lithium super‐ionic conductors as model systems, we propose and demonstrate the density of atomistic states (DOAS) analytics to quantitatively characterize the onset and degree of disordering, reveal the energetics of local disorder, and elucidate how the frustration enhances diffusion through the broadening and overlapping of the energy levels of atomistic states. Furthermore, material design strategies aided by the DOAS are devised and demonstrated for new super‐ionic conductors. The DOAS is generally applicable analytics for unraveling fundamental mechanisms in complex atomistic systems and guiding material design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.