Abstract

One-compartment biofuel cells without separators have been constructed, in which d-fructose dehydrogenase (FDH) from Gluconobacter sp. and laccase from Trametes sp. (TsLAC) work as catalysts of direct electron transfer (DET)-type bioelectrocatalysis in the two-electron oxidation of d-fructose and four-electron reduction of dioxygen as fuels, respectively. FDH adsorbs strongly and stably on Ketjen black (KB) particles that have been modified on carbon papers (CP) and produces the catalytic current with the maximum density of about 4 mA cm(-2) without mediators at pH 5. The catalytic wave of the d-fructose oxidation is controlled by the enzyme kinetics. The location and the shape of the catalytic waves suggest strongly that the electron is directly transferred to the KB particles from the heme c site in FDH, of which the formal potential has been determined to be 39 mV vs. Ag|AgCl|sat. KCl. Electrochemistry of three kinds of multi-copper oxidases has also been investigated and TsLAC has been selected as the best one of the DET-type bioelectrocatalyst for the four-electron reduction of dioxygen in view of the thermodynamics and kinetics at pH 5. In the DET-type bioelectrocatalysis, the electron from electrodes seems to be transferred to the type I copper site of multi-copper oxidases. TsLAC adsorbed on carbon aerogel (CG) particles with an average pore size of 22 nm, that have been modified on CP electrodes, produces the catalytic reduction current of dioxygen with a density of about 4 mA cm(-2), which is governed by the mass transfer of the dissolved dioxygen. The FDH-adsorbed KB-modified CP electrodes and the TsLAC-adsorbed CG-modified CP electrodes have been combined to construct one-compartment biofuel cells without separators. The open-circuit voltage was 790 mV. The maximum current density of 2.8 mA cm(-2) and the maximum power density of 850 microW cm(-2) have been achieved at 410 mV of the cell voltage under stirring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.