Abstract

In the coldest part of winter, water uptake is blocked by the frozen soil and frozen stems known as 'frost drought' causing severe embolisms in woody plants. Frost drought in stems was simulated in a centrifuge by a synergy between freeze-thaw cycles and the different tensions induced by changing the rotation speed. Frost fatigue was defined as a reduction of embolism resistance after a freeze-thaw cycle and determined from 'vulnerability curves', which showed percent losses of conductivity vs tension (positive value) or xylem pressure (negative value). Different tensions combined with a controlled freeze-thaw cycle were induced to investigate the effects on frost resistance over the course of year. During the growing season, Acer mono Maxim. developed significant frost fatigue, and a significant positive correlation was found between frost fatigue response and exogenous tension. During the dormant season, A. mono showed very high embolism resistance to frost drought, even under a tension of 2MPa. When the exogenous tension was increased to 3MPa while the stem was frozen, significant frost fatigue occurred. Longer freezing times had more serious effects on frost fatigue in A. mono. A hypothesis was raised that at the same low temperature, the severer the drought (higher tension) when stems were frozen, the higher frost fatigue response would be induced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.