Abstract

The thermal-hydraulic performance under conditions of an initial frost growth on the air-side surface, and for subsequent ‘refrosting’ after a defrost period is experimentally studied for folded-louvered-fin, microchannel heat exchangers. In total, five heat exchangers are considered; the thermal performances during one frost-growth cycle for four different fin geometries are compared in terms of overall heat transfer coefficient, pressure drop, and j and f factors; the defrost and refrost characteristics of two heat exchangers are compared to explore geometry effects. Typically, the performance under refrosting conditions becomes periodic and repeatable after the third or fourth refrosting cycle. The allowable frost growth period (before a defrost is required), the defrost requirement, and the thermal-hydraulic performance depend on heat exchanger geometry for the specimens used in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.