Abstract
Twenty-one peer-reviewed papers examine cyclic deformation and modeling, damage mechanisms and fatigue life prediction of materials under thermomechanical loading conditions. It also contains the latest testing techniques for performing thermomechanical tests on material specimens. Sections cover: Thermomechanical Deformation Behavior and Modeling details the rapid advances in computational technology to identify and characterize the complex viscoplastic deformation of materials under thermomechanical conditions. Damage Mechanisms Under Thermomechanical Fatigue discusses coated alloys, single crystal nickel-base superalloys, and titanium aluminide materials. Thermomechanical Fatigue Behavior (TMF) and Cyclic Life Prediction examines an approach utilizing fracture mechanics for TMF life prediction, coated TMF behavior of a monocrystalline superalloy, fatigue behavior characterization of uncoated and coated superalloys under TMF conditions, complex loading effects, and applications in the automotive arena. Experimental Techniques for Themomechanical Testing deals with the development and implementation of sophisticated experimental testing techniques for improving thermomechanical fatigue testing capability. This is a reliable engineering tool for aerospace, automotive, mechanical, and civil engineers; structural analysts; mechanical designers; and materials scientists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.