Abstract

AbstractWe present a review of our recent developments in computational modeling of hydrogen-bonding-induced phenomena in a series of biologically relevant bifunctional proton donor–acceptor heteroazaaromatic compounds. Different types of hydrogen-bonded solvates, in which water or alcohol molecules form a bridge connecting the proton donor (pyrrole NH group) and the acceptor (pyridine or quinoline nitrogen) atoms of bifunctional solutes, are explored by combining density functional theory (DFT) and molecular dynamics (MD) simulation approaches. Structure and dynamics of multiple hydrogen-bonded solute-solvent complexes are studied starting from isolated complexes in the gas phase, elucidating their solvation dynamics in solutions and, finally, in a heterogeneous environment of a lipid bilayer. Our results indicate that the structure, stoichiometry and hydrogen bond strength in such solvates are tuned by local topologies of the hydrogen-bonding sites of a bifunctional proton donor–acceptor molecule. A role of such solvates in hydrogen-bond-dependent photophysics and in controlling excited-state behavior of heteroazaaromatic compounds is discussed.KeywordsExcited-state proton transferHydrogen-bonded complexesHydrogen-bonded networkDensity functional theoryTDDFTFluorescent probeLipid bilayerMolecular dynamics simulations

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.