Abstract

We study weakly disordered quantum wires whose width is large compared to the Fermi wavelength. It is conjectured that such wires diplay universal metallic behaviour as long as their length is shorter than the localization length (which increases with the width). The random matrix theory that accounts for this behaviour - the DMPK theory- rests on assumptions that are in general not satisfied by realistic microscopic models. Starting from the Anderson model on a strip, we show that a twofold scaling limit nevertheless allows to recover rigorously the fundaments of DMPK theory, thus opening a way to settle some conjectures on universal metallic behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.