Abstract
A Hopf algebra with four generators among which an involution (reflection) operator, is introduced. The defining relations involve commutators and anticommutators. The discrete series representations are developed. Designated by $sl_{-1}(2)$, this algebra encompasses the Lie superalgebra $osp(1|2)$. It is obtained as a $q=-1$ limit of the $sl_q(2)$ algebra and seen to be equivalent to the parabosonic oscillator algebra in irreducible representations. It possesses a noncocommutative coproduct. The Clebsch-Gordan coefficients (CGC) of $sl_{-1}(2)$ are obtained and expressed in terms of the dual -1 Hahn polynomials. A generating function for the CGC is derived using a Bargmann realization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.