The aims of this work are to analyze the changes in the world power industry during the time after the adoption of the United Nations Framework Convention on Climate Change of 1992 and to assess the extent to which the commitments of the Kyoto Protocol of 1997 have been met and evaluate the prospects of implementing the tasks of the Paris Agreement of 2015. Based on data on the production and consumption of various kinds of energy and the emissions of greenhouse gases, primarily carbon dioxide, in 1990–2017, changes in the structure of the global energy consumption, trends in electric power generation, and the influence of different factors on the carbon dioxide emissions in power-generating enterprises are investigated. It is shown that the power industry, which is the main source of anthropogenic greenhouse gases (GHGs), is the most inertial branch of the economy in terms of its contribution to the reduction in GHG emissions. Thus, in the first 2008–2012 commitment period of the Kyoto Protocol, GHG emissions in the state parties to the protocol decreased by 7.6% compared the base year, while other GHG sources reduced the emission by 18%. The corresponding figures for the following 2013–2017 commitment period were 10.6 and 17.1%, respectively. The maximum reduction in the carbon dioxide emissions in the power industry resulted from an increase in the global average efficiency of the thermal power stations from 32% in 1990 to 36% in 2017; as a consequence, the cumulative decrease in the CO2 emissions in the world during the 1990–2017 period was approximately 22 billion t. The increase in the electric power generation at HPPs and NPPs resulted in a reduction in GHG emissions by 16.7 and 10.7 billion t, respectively. The substitution of coal and fuel oil by gas at thermal power stations facilitated reducing the emissions by 5.2 billion t, while the use of renewable energy sources for generation of electric energy resulted in a reduction of 1.1 billion t. The contribution of the carbon capture and storage technologies amounting to only 0.2 billion t is not noticeable so far.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call