Abstract

Modeling biological neural networks has been a field opening to major advances in our understanding of the mechanisms governing the functioning of the brain in normal and pathological conditions. The emergence of real-time neuromorphic platforms has been leading to a rising significance of bio-hybrid experiments as part of the development of neuromorphic biomedical devices such as neuroprosthesis. To provide a new tool for the neurological disorder characterization, we design real-time single and multicompartmental Hodgkin-Huxley neurons on FPGA. These neurons allow biological neural network emulation featuring improved accuracy through compartment modeling and show integration in bio-hybrid system thanks to its real-time dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.