Abstract
Systems Biology Much insight has come from structures of macromolecular complexes determined by methods such as crystallography or cryo–electron microscopy. However, looking at transient complexes remains challenging, as does determining structures in the context of the cellular environment. Braberg et al. used an integrative approach in which they mapped the phenotypic profiles of a comprehensive set of mutants in a protein complex in the context of gene deletions or environmental perturbations (see the Perspective by Wang). By associating the similarity between phenotypic profiles with the distance between residues, they determined structures for the yeast histone H3-H4 complex, subunits Rpb1-Rpb2 of yeast RNA polymerase II, and subunits RpoB-RpoC of bacterial RNA polymerase. Comparison with known structures shows that the accuracy is comparable to structures determined based on chemical cross-links. Science , this issue p. [eaaz4910][1]; see also p. [1269][2] [1]: /lookup/doi/10.1126/science.aaz4910 [2]: /lookup/doi/10.1126/science.abf3863
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.