Abstract

Laboratory techniques to manipulate and observe ultracold atoms make these an attractive platform for testing new ideas in quantum control and measurement. Over the last decade we have revisited the tensor interaction between light fields and multilevel atoms, and have developed a theoretical framework suited for applications in quantum control and measurement (see [1] for a review). One important finding is that the combined action of a light shift and magnetic field on an atomic ground state can be used to implement a non-linear Hamiltonian for a hyperfine spin, and that its action can lead to nonlinear spin dynamics such as wavepacket collapse and revival. Using concepts from classical control theory it is straightforward to show that this Hamiltonian is sufficiently general for full control of an arbitrarily large spin. On this foundation we have developed a new protocol for quantum state reconstruction, based on continuous weak measurement of a spin observable during carefully designed coherent evolution [2]. We have further used our tools for control and state reconstruction to implement and verify protocols for optimal control of Cs hyperfine spins (Fig. 1), showing that an initial fiducial state can be transformed into any desired target state with a fidelity in the 80–90% range [3].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.