Abstract

Brain rhythms are essential for information processing in neuronal networks. Oscillations recorded in different brain regions can be synchronized and have a constant phase difference, that is, they can be coherent. Coherence between local field potential (LFP) signals from different brain regions may be correlated with the performance of cognitive tasks, indicating that these regions of the brain are jointly involved in the information processing. Why does coherence occur and how is it related to the information transfer between different regions of the hippocampal formation? In this article, we discuss possible mechanisms of theta and gamma coherence and its role in the hippocampus-dependent attention and memory processes, since theta and gamma rhythms are most pronounced in these processes. We review in vivo studies of interactions between different regions of the hippocampal formation in theta and gamma frequency bands. The key propositions of the review are as follows: (1) coherence emerges from synchronous postsynaptic currents in principal neurons as a result of synchronization of neuronal spike activity; (2) the synchronization of neuronal spike patterns in two regions of the hippocampal formation can be realized through induction or resonance; (3) coherence at a specific time point reflects the transfer of information between the regions of the hippocampal formation; (4) the physiological roles of theta and gamma coherence are different due to their different functions and mechanisms of generation. All hippocampal neurons are involved in theta activity, and theta coherence arranges the firing order of principal neurons throughout the hippocampal formation. In contrast, gamma coherence reflects the coupling of active neuronal ensembles. Overall, the coherence of LFPs between different areas of the brain is an important physiological process based on the synchronized neuronal firing, and it is essential for cooperative information processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.