Abstract

For three decades, we have known that estrogens alter the development of the mammalian reproductive system in predictable ways. In mice exposed prenatally to diethylstilbestrol (DES) or other estrogens, the male offspring exhibit structural malformations including cryptorchidism, epididymal cysts and retained Mullerian ducts. The estrogen‐associated alterations in the genital tract phenotype can be usefully considered as a model called Developmental Estrogenization Syndrome. While estrogen treatment during critical periods of morphogenesis of the male reproductive system has been associated with these changes, the mechanisms at the molecular level are still being discovered. Parallel findings on the hormones involved in Mullerian duct regression and testicular descent have helped guide research on the mechanisms of developmental estrogenization of the male. Cellular localization of molecular signals associated with key steps in genital tract development, use of mice with gene disruption, and knowledge of the mechanisms underlying persistent changes in gene expression are beginning to provide a blue print for both the physiological role and pathological effects of estrogens in reproductive tract development. Since many of the same biological principles underlie genital tract morphogenesis in mammals, one may expect some of the same changes in males of other species exposed to estrogen during the appropriate developmental periods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.