Abstract

The evolution of a quantum lattice gas automaton (LGA) for a single charged particle is invariant under multiplication of the wave function by a global phase. Requiring invariance under the corresponding local gauge transformations determines the rule for minimal coupling to an arbitrary external electromagnetic field. We develop the Aharonov-Bohm effect in the resulting model into a constant time algorithm to distinguish a one dimensional periodic lattice from one with boundaries; any classical deterministic LGA algorithm distinguishing these two spatial topologies would have expected running time on the order of the cardinality of the lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.