Abstract

A biosourced, cross-linked hydrogel-type heavy metal adsorbent is presented. Various factors such as the highly efficient chemical interactions, the various network structures, the decreased energy consumption during cross-linking, and the negligible amount of generated waste are considered when designing the adsorbent. The widely applied, naturally occurring food additive δ-gluconolactone is studied as a building block for the adsorbent. Aminolysis reactions were applied to form linear dimer precursors between diamines and δ-gluconolactones. The abundant hydroxyl groups on the dimers from δ-gluconolactone were fully exploited by using them as the cross-linking sites for reactions with ethylenediaminetetraacetic dianhydride, a well-known metal-chelating moiety. The versatility of the adsorbent and its metal-ion binding capacity is well tuned using dimers with different structures and by controlling the feed ratios of the precursors. Buffers with different pH values were used as the conditioning media to e...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.