Abstract

Experiments using the binding of various ligands for monoamines to rat brain membranes and synaptosomal preparations for studying monoamine uptake and release have shown that d-fenfluramine is more potent than the l isomer in inhibiting 5-HT uptake, whereas d-norfenfluramine preferentially releases 5-HT from a reserpine-insensitive compartment. Studies on brain monoamine metabolism in intact animals have shown that the d and l isomers of fenfluramine at relatively low doses have a specific action on brain 5-HT and catecholamines, respectively. Based on the different ability of metergoline and ritanserin to displace 5-HT2 binding to rat brain membranes and to antagonize d-fenfluramine's anorexia, evidence has been provided that d-fenfluramine preferentially uses 5-HT1 sites in the rat brain to cause anorexia in this animal species. Finally, characteristics, regional distribution, and pharmacological characterization of a high-affinity [3H]d-fenfluramine binding to rat brain membranes have been described. This binding appears to be different from 5-HT uptake sites ([3H]imipramine binding) and 5-HT receptors and is not regionally related to the endogenous levels of 5-HT in the rat brain. It is, however, preferentially displaced by some agents using 5-HT to cause anorexia in rats, raising the possibility that it is somewhat related to 5-HT mechanisms involved in feeding control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.