Abstract

Recent environmental sharp curbs on fossil fuel energy systems such as coal power plants due to their greenhouse gas emissions have compelled industries to include renewable fuels. Biomass/coal co-gasification could provide a transition from energy production based on fossil fuels to renewables. A low-ash coal and switchgrass rich in potassium were selected on the basis of previous thermogravimetric studies to steam co-gasify 50:50 wt% coal:switchgrass mixtures in a pilot scale bubbling fluidized bed reactor with silica sand as the bed material at ∼800 and 860 °C and 1 atm. With the switchgrass added to coal, the hydrogen and cold gas efficiencies, gas yield and HHV of the product gas were enhanced remarkably relative to single-fuel gasification. The product gas tar yield also decreased considerably due to decomposition of tar catalyzed by switchgrass alkali and alkaline earth metals. Switchgrass ash therefore can act as inexpensive natural catalysts for steam gasification and assist in operating at lower temperatures without being penalized by an increase in product tar yield. An equilibrium model over-predicted hydrogen and under-predicted methane concentrations. However, an empirically kinetically-modified model was able to predict the product gas compositions accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.