Abstract

Climate and land-use changes can alter the dynamics of hydro-climatic extremes by modifying the flow regimes. Here, we have attempted to disentangle the relationship between changing environmental conditions and hydro-climatic extremes considering associated uncertainties for the Subarnarekha, a flood prone-basin of India. A comprehensive, integrated modelling system was developed that incorporates a spatially explicit land-use model, a hydrological model, and an ensemble of regional climate models (RCMs). MIKE SHE/MIKE HYDRO RIVER was used to simulate the hydrological processes. The uncertainties associated with model parameters, model inputs, and model structures are analysed collectively using ‘quantile regression.’ A transferable framework was developed for the analysis of hydro-climatic extremes that deal with numerous aspects like sensitivity, occurrences, severity, and persistence for four-time horizons: baseline (1976–2005) and early (2020s), mid (2050s), end-centuries (2080s). ANOVA is used for partitioning uncertainty due to different sources. The results obtained from numerous analysis of the developed framework suggests that low, high, and medium flows will probably increase in the future (20%-85% increase), indicating a higher risk of floods, especially in the 2050s and 2080s. Partitioning of uncertainty suggests RCMs contribute 40%-62% to the uncertainty in streamflow projections. The developed modelling systems incorporates a flexible framework so update any other water sustainability issue in the future. These findings will help better meet the challenges associated with the possible risk of increasing high flows in the future by ceding references to the decision-makers for framing better prevention measures associated with land-use and climate changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.