Abstract
In Tunisia, there are crucial challenges facing both urban and rural areas, the most prominent of which are the production of organic waste, the need for waste treatment, the demand for water and energy and the need for a circular economy. To this end, the study was designed to develop a technical concept on closed cycle ‘biowaste to bioenergy’ treating, basically food waste (FW) through combined biological processes. In this approach, the generated digestate from FW anaerobic reactors was used successfully as a moisturizing agent for FW in-vessel composting. Four types of digestate were examined to be used as moisturizing agent (MA). The selection of the appropriate MA was achieved based on technical criteria; moisture content (MC), C:N ratio and heavy metals concentrations. The findings showed that the digestate obtained from anaerobic co-digestion of food waste and wheat straw (D1) was the most efficient AD-effluent to be added. In terms of composting process performance, the thermophilic phase of the amended reactor (A1) lasted 16 days and reached higher temperatures of about 72 °C, while the unamended one (A1) was characterized by a thermophilic temperature of around 66 °C indicating that the end products were of a pathogen-free compost. When it comes to the physico-chemical factors examined demonstrating that the biological conditions were sufficiently developed. The findings showed overall decreasing profiles during the composting period for moisture, C:N ratio as well as nitrification index (NI). From the quality-point of view, it was found that heavy metal concentrations had lower limits than those values set by German standards. Moreover, all the compost samples appeared to be stable and classified as class IV and V end product.
Highlights
Urban solid waste management is one of the most pressing and serious environmental problems facing urban governments in developing countries
The experimental research was designed to create a technical approach through the combination of the two major biological treatment technologies, anaerobic and aerobic digestion
Four types of digestate were collected from different anaerobic reactors to be exploited as moisturizing agents (MA) to feed food waste (FW) and wheat straw (WS) in-vessel composters
Summary
Urban solid waste management is one of the most pressing and serious environmental problems facing urban governments in developing countries. This challenge will become even more severe in the future given the trends of rapid urbanization and the growth in the urban population (Arafat et al 2015; Ferronato and Torretta 2019). Improper collection and disposal of waste poses a serious health risk to the population causing a clear environmental degradation in most cities of the developing world (Meylan et al 2018). Recycling of inorganic materials from municipal solid waste is often well developed by the activities of the informal sector (Aparcana 2017)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.