Abstract
To examine whether interference with FRNK targeting to focal adhesions (FAs) affects its inhibitory activity and tyrosine phosphorylation. Focal adhesion kinase and its autonomously expressed C-terminal inhibitor, focal adhesion kinase-related nonkinase (FRNK), regulate vascular smooth muscle cell (VSMC) signaling and migration. FRNK-paxillin binding was reduced by a point mutation in its FA targeting domain (L341S-FRNK). Green fluorescent protein-tagged wild type and L341S-FRNK were then adenovirally expressed in VSMCs. L341S-FRNK targeted to VSMC FAs, despite previous studies in other cell types. L341S-FRNK affected FA binding kinetics (assessed by total internal reflection fluorescnece [TIRF] microscopy and fluorescence recovery after photobleaching [FRAP]) and reduced its steady-state paxillin interaction (determined by coimmunoprecipitation). Both wt-FRNK and L341S-FRNK lowered basal and angiotensin II-stimulated focal adhesion kinase, paxillin, and extracellular signal-regulated kinase 1/2 phosphorylation. However, the degree of inhibition was significantly reduced by L341S-FRNK. L341S-FRNK also demonstrated significantly greater migratory activity compared with wt-FRNK-expressing VSMCs. Angiotensin II-induced Y168 phosphorylation was Src dependent, as evident by a significant reduction in Y168 phosphorylation by the Src family kinase inhibitor PP2 is 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Surprisingly, Y168 phosphorylation was unaffected by its targeting. Furthermore, Y232 phosphorylation increased approximately 3-fold in L341S-FRNK, which was less sensitive to PP2. FRNK inhibition of VSMC migration requires both FA targeting and Y168 phosphorylation by Src family kinases. FRNK-Y232 phosphorylation occurs outside of FAs, probably by a PP2-insensitive kinase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arteriosclerosis, Thrombosis, and Vascular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.