Abstract

Smooth inner pores of carbon nanotubes (CNT) provide a fascinating model for studying biological transport. We used an atomic force microscope to pull a single-stranded DNA oligomer from a carbon nanotube pore. DNA extraction from CNT pores occurs at a nearly constant force, which is drastically different from the elastic profile commonly observed during polymer stretching with atomic force microscopy. We show that a combination of the frictionless nanotube pore walls and an unfavorable DNA solvation energy produces this constant force profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.