Abstract

In the present investigation, both micro-crystalline and nanocrystalline diamond (MCD and NCD) films are fabricated, which are characterized by FESEM (Field Emission Scanning Electron Microscopy), surface profilemeter, Raman spectroscopy and Rockwell hardness tester. Moreover, under the dry environment, the frictional behavior of both the films sliding against commonly-used materials in the metal drawing industry is studied on a ball-on-plate rotational frictional tester, including the stainless steel, low-carbon steel, high-carbon steel and copper, demonstrating that the frictional coefficients between NCD films and all these materials are relatively smaller. Furthermore, the wear rates of both the films, which are hardly measured in the ball-on-plate friction tests, are evaluated using a home-made inner-hole line drawing apparatus, with both the diamond films deposited on the inner-hole surfaces and the low-carbon steel wires as the counterparts. Inversely, the NCD films present higher wear rates than the MCD ones, which can be attributed to the deteriorative film purity and adhesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.