Abstract
The feasibility of joining material extrusion (MEX) 3D-printed acrylonitrile butadiene styrene (ABS) plates with the friction stir welding (FSW) process was investigated herein as a promising topic of hybrid additive manufacturing (HAM). The influence of three process parameters on the mechanical strength of the joints was thoroughly examined and analyzed with a full factorial experimental design and statistical modeling. Hereto, the welding tool pin geometry, travel speed, and rotational speed were investigated. The joint’s efficiency and quality are evaluated through tensile tests and morphological characterization. More specifically, specimens’ areas of particular interest were investigated with stereoscopic, optical, and scanning electron microscopy. Throughout the FSW experimental course, the welding temperature was monitored to evaluate the state of the ABS material during the process. The majority of the welded specimens exhibited increased mechanical strength compared with the respective ones of non-welded 3D printed specimens of the same geometry. Statistical modeling proved that all processing parameters were significant. The feasibility of the FSW process in 3D printed ABS workpieces was confirmed, making the FSW a cost-effective process for joining 3D printing parts, further expanding the industrial merit of the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.