Abstract

In this work, the friction and wear properties of Kevlar pulp reinforced epoxy composites against GCr15 steel under dry sliding condition were evaluated on a reciprocating ball-on-block UMT-2MT tribometer. The effects of Kevlar pulp content on tribological properties of the composites were investigated. The worn surface morphologies of neat epoxy and its composites were examined by scanning electron microscopy (SEM) and the wear mechanisms discussed. The results show that the incorporation of Kevlar pulp into epoxy contributed to improve the friction and wear behavior considerably. The maximum wear reduction was obtained when the content of Kevlar pulp is 40 vol%. The friction coefficient of epoxy and its composites increased with load while increase in the sliding frequency induced a reverse effect. Fatigue wear and scuffing were notable for the neat epoxy. The fatigue cracks were greatly abated when the filler content was 40 vol%. The wear grooves appeared on the worn surface at higher filler content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.