Abstract

This paper focuses on investigating wear behavior of Austenitic stainless steel-304 using pin-on-disc wear testing tribometer in as-received condition. Wear behavior is of particular concern as the frictional force and coefficients of friction are known to influence the wear significantly. In this study, we have taken austenitic stainless steel (304) as a pin which makes point contact against the mating surface of alumina ceramic disc. Sliding distance and speed are maintained constant during the P-o-D experiments. Experimental runs carried out with load on the pin at three different weights. The scientific data so obtained, viz wear, frictional force, and coefficient of friction are plotted employing Origin Graphs. The microstructure of worn-down surface is characterized using a Scanning Electron Microscope. Results obtained found with a good agreement of wear behavior of austenitic stainless steels. Frictional force and coefficient friction fluctuated severely when the load is applied. The SEM investigations indicate that moderate loading on stainless steel will preserve anti-galling characteristics while offering resistance to wear. However, the 3 kg loading on the pin exhibited a microscopic scale transfer, adhesion and spalling of the material of the pin during sliding. SEM studies revealed that moderate loading preserved anti-galling characteristics of the material of the pin. Results of these investigations will have an impact on applications leading to orthopedic stainless steel implants used against broken bones which are analogous to ceramic. The wear tests have bearing on the products used in ceramic brake pads, ceramic disc brakes of automobiles and railway trucks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.