Abstract

Frequency-dependent NMR relaxation studies have been carried out on water (polar) and cyclohexane (nonpolar) molecules confined inside porous ceramics containing variable amounts of iron oxide (III). The porous ceramics were prepared by compression of powders mixed with iron oxide followed by thermal treatment. The pore size distribution was estimated using a technique based on diffusion in internal fields that exposed a narrow distribution of macropore sizes with an average pore dimension independent of iron oxide content. The relaxation dispersion curves were obtained at room temperature using a fast field cycling NMR instrument. They display an increase of the relaxation rate proportional to the iron oxide concentration. This behavior is more prominent at low Larmor frequencies and is independent of the polar character of the confined molecules. The results reported here can be fitted well with a relaxation model considering exchange between molecules in the close vicinity of the paramagnetic centers located in the surface and bulk-like molecules inside the pores. This model allows the extraction of the transverse diffusional correlation time that can be related to the polar character of the confined molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.