Abstract

Image texture is an important visual cue in image processing and analysis. Texture feature expression is an important task of geo-objects expression by using a high spatial resolution remote sensing image. Texture features based on gray level co-occurrence matrix (GLCM) are widely used in image spatial analysis where the spatial scale is especially of great significance. Based on the Fourier frequency-spectral analysis, this paper proposes an optimal scale selection method for GLCM. Different subset textures are firstly upscaled by GLCM with different window sizes. Then the multiscale texture feature images are converted into the frequency domain by Fourier transform. Consequently, the radial distribution and angular distribution curves changing with different window sizes from spectrum energy can be achieved, by which the texture window size can be selected. In order to verify the validity of this proposed texture scale selection method, this paper uses high-resolution fusion images to classify land cover based on multiscale texture expression. The results show that the proposed method combining frequency-spectral analysis-based texture scale selection can guarantee the quality and accuracy of the classification, which further proves the effectiveness of optimal texture window size selection method bases on frequency spectrum analysis. Other than scale selection in spatial domain, this paper casts a novel idea for texture scale selection in the frequency domain, which is meant for scale processing of remote sensing image.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.